Lý thuyết và bài tập trắc nghiệm số phức

Lý thuyết và bài tập trắc nghiệm số phức

Lý thuyết và bài tập trắc nghiệm số phức là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến quý thầy cô cùng các bạn học sinh lớp 12 tham khảo.

Bạn đang đọc: Lý thuyết và bài tập trắc nghiệm số phức

Bài tập trắc nghiệm số phức gồm 30 trang tổng hợp lý thuyết và các dạng bài tập trắc nghiệm thường xuất hiện trong các đề thi THPT Quốc gia qua các năm có đáp án kèm theo. Hi vọng qua tài liệu này giúp các bạn lớp 12 học tập chủ động, nâng cao kiến thức để đạt kết quả cao trong kì thi THPT Quốc gia sắp tới. Bên cạnh đó các bạn xem thêm: Bài tập phương trình phức, Bài tập thể tích khối chóp có một cạnh bên vuông góc với đáy, 572 câu trắc nghiệm chuyên đề Hàm số nâng cao.

Lý thuyết và bài tập trắc nghiệm số phức

1. Số phức là gì?

– Số phức là trường hợp tổng quát hơn của số thực. Số thực là 1 trường hợp cụ thể của số phức (khi b = 0).

– Số phức có dạng: z = a + bi, (a, b ∈ Lý thuyết và bài tập trắc nghiệm số phức), i2 = -1 trong đó a là phần thức, b là phần ảo

– Tập các số phức là tập Lý thuyết và bài tập trắc nghiệm số phức

Hai số phức bằng nhau: Hai số phức z = a + bi, w = c + di bằng nhau khi: Lý thuyết và bài tập trắc nghiệm số phức

Số phức liên hợp

Lý thuyết và bài tập trắc nghiệm số phức

Biểu diễn số phức

z = a + bi là điểm M(a, b) trên mặt phẳng tọa độ

Mô đun của số phức

Lý thuyết và bài tập trắc nghiệm số phức

2. Công thức số phức cần nhớ

a. Công thức cộng, trừ, nhân, chia số phức

– Cho hai số phức z = a + bi, w = c + di, (a, b, c, d ∈ R), i2 = -1 ta có:

Phép cộng số phức: z + w = (a + c) + (b + d)i

Phép trừ số phức: z – w = (a – c) + (b – d)i

Phép nhân số phức z.w = (ac – bd) + (ad + bc)i

Phép chia số phức

Lý thuyết và bài tập trắc nghiệm số phức

b. Tính chất cần nhớ

– Cho số phức z = a + bi, (a, b ∈ R), i2 = -1

  • Lý thuyết và bài tập trắc nghiệm số phức Số phức z là số thực
  • Lý thuyết và bài tập trắc nghiệm số phức Số phức x là số thuần ảo

– Cho hai số phức z1 = a + bi, z2 = c + di, (a, b, c, d ∈ R) ta có:

  • Lý thuyết và bài tập trắc nghiệm số phức
  • Lý thuyết và bài tập trắc nghiệm số phức
  • Lý thuyết và bài tập trắc nghiệm số phức
  • Lý thuyết và bài tập trắc nghiệm số phức
  • Lý thuyết và bài tập trắc nghiệm số phức
  • Lý thuyết và bài tập trắc nghiệm số phức

Căn bậc hai của một số phức

Cho số phức z = a + bi. Tìm căn bậc hai của một số phức

– Nếu z = 0 ⇒ z có căn bậc hai là: 0

– Nếu z = a > 0 ⇒ z có căn bậc hai là: Lý thuyết và bài tập trắc nghiệm số phức

– Nếu z = a

Nếu z = a + bi, b ≠ 0. Giả sử w = x + yi, y ∈ R là một căn bậc hai của số phức z ta có:

w2 = z ⇔ (x + yi)2 = a + bi

Lý thuyết và bài tập trắc nghiệm số phức

Giải hệ phương trình trên mỗi cặp (x; y) thu được cho ta một căn bậc hai của z.

……….

Tải file tài liệu để xem thêm bài tập trắc nghiệm số phức 

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *