Toán 10 Bài 1: Mệnh đề

Toán 10 Bài 1: Mệnh đề

Giải bài tập Toán 10 Kết nối tri thức Bài 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi Luyện tập và 7 bài tập trong SGK bài Mệnh đề.

Bạn đang đọc: Toán 10 Bài 1: Mệnh đề

Giải Toán 10 Kết nối tri thức trang 11 được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán 10 tập 1. Giải Toán 10 tập 1 trang 11 là tài liệu cực kì hữu ích hỗ trợ các em học sinh lớp 10 trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Giải bài tập Toán 10 Bài 1: Mệnh đề

I. Trả lời câu hỏi Toán 10 Bài 1 phần Luyện tập

II. Giải bài tập Toán 10 Kết nối tri thức trang 11

III. Lý thuyết Toán 10 Bài 1: Mệnh đề

I. Trả lời câu hỏi Toán 10 Bài 1 phần Luyện tập

Luyện tập 1

Thay dấu “?” bằng dấu “x” vào ô thích hợp trong bảng sau:

Câu

Không phải mệnh đề

Mệnh đề đúng

Mệnh đề sai

13 là số nguyên tố

?

?

?

Tổng độ dài hai cạnh bất kì của một tam giác nhỏ hơn độ dài cạnh còn lại

?

?

?

Bạn đã làm bài tập chưa?

?

?

?

Thời tiết hôm nay thật đẹp!

?

?

?

Lời giải chi tiết

Hoàn thành bảng như sau:

Câu

Không phải mệnh đề

Mệnh đề đúng

Mệnh đề sai

13 là số nguyên tố

x

Tổng độ dài hai cạnh bất kì của một tam giác nhỏ hơn độ dài cạnh còn lại

x

Bạn đã làm bài tập chưa?

x

Thời tiết hôm nay thật đẹp!

x

Luyện tập 2

Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.

P: ”2 022 chia hết cho 5”

Q: “Bất phương trình 2x + 1 > 0 có nghiệm”

Lời giải chi tiết

Mệnh đề phủ định của P là Toán 10 Bài 1: Mệnh đề: ”2 022 không chia hết cho 5”

Ta có: 2 022 có chữ số cuối cùng là 2

=> 2 022 không chia hết cho 5

Vậy mệnh đề Toán 10 Bài 1: Mệnh đề là mệnh đề đúng.

Mệnh đề phủ định của Q là Toán 10 Bài 1: Mệnh đề: “Bất phương trình 2x + 1 > 0 vô nghiệm”

Ta có:

2x + 1 > 0

=> 2x > -1

=> x > -1/2

=> Bất phương trình 2x + 1 > 0 có nghiệm

Vậy mệnh đề Toán 10 Bài 1: Mệnh đề là mệnh đề sai.

Luyện tập 3

Cho các mệnh đề P:” a và b chia hết cho c”; Q: “a + b chia hết cho c”

a) Hãy phát biểu định lí P => Q. Nêu giả thiết, kết luận của định lí và phát biểu định lí này dưới dạng điều kiện cần, điều kiện đủ.

b) Hãy phát biểu mệnh đề đảo của mệnh đề P Q rồi xác định tính đúng sai của mệnh đề đảo này.

Lời giải chi tiết

a) Định lí P ⇒ Q được phát biểu như sau:

Nếu a và b chia hết cho c thì a + b chia hết cho c.

Giả thiết của định lí là: a và b chia hết cho c;

Kết luận của định lí là: a + b chia hết cho c.

Định lý P ⇒ Q được phát biểu dưới dạng điều kiện cần và đủ là:

a và b chia hết cho c là điều kiện đủ để a + b chia hết cho c.

a + b chia hết cho c là điều kiện cần để a và b chia hết cho c.

b) Mệnh đề đảo của mệnh đề P ⇒ Q được phát biểu như sau:

Nếu a + b chia hết cho c thì a và b chia hết cho c.

Ví dụ: a = 10, b = 2, c = 3

Ta có: a + b = 10 + 2 = 12 chia hết cho 3 nhưng a = 10 không chia hết cho 3 và b = 2 cũng không chia hết cho 3. Do đó mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề sai.

Luyện tập 4

Phát biểu điều kiện cần và điều kiện đủ để số tự nhiên n chia hết cho 2”.

Lời giải chi tiết

Điều kiện cần và đủ để số tự nhiên n chia hết cho 2: n là số tự nhiên chẵn.

II. Giải bài tập Toán 10 Kết nối tri thức trang 11

Bài 1.1

Trong các câu sau, câu nào là mệnh đề?

a) Trung Quốc là nước đông dân nhất thế giới;

b) bạn học trường nào?

c) Không được làm việc riêng trong giờ học;

d) Tôi sẽ sút bóng trúng xà ngang.

Gợi ý đáp án

Câu là mệnh đề là: a.

a) “Trung Quốc là nước đông dân nhất thế giới” là một mệnh đề.

b) “bạn học trường nào?” không là mệnh đề (do không xác định được tính đúng sai).

c) “Không được làm việc riêng trong giờ học” không là mệnh đề (do không xác định được tính đúng sai).

d) “Tôi sẽ sút bóng trúng xà ngang.” không là mệnh đề (do không xác định được tính đúng sai).

Bài 1.2

Xác định tính đúng sai của mỗi mệnh đề sau:

a) Toán 10 Bài 1: Mệnh đề dfrac{{10}}{3};” width=”66″ height=”41″ data-type=”0″ data-latex=”pi > dfrac{{10}}{3};” data-src=”https://tex.vdoc.vn?tex=%5Cpi%20%3E%20%5Cdfrac%7B%7B10%7D%7D%7B3%7D%3B”>

b) Phương trình 3x + 7 = 0 có nghiệm;

c) Có ít nhất một số cộng với chính nó bằng 0;

d) 2022 là hợp số.

Gợi ý đáp án

a) Mệnh đề Toán 10 Bài 1: Mệnh đề dfrac{{10}}{3}” width=”70″ height=”41″ data-type=”0″ data-latex=”“pi > dfrac{{10}}{3}” data-src=”https://tex.vdoc.vn?tex=%E2%80%9C%5Cpi%20%3E%20%5Cdfrac%7B%7B10%7D%7D%7B3%7D”>” sai vì Toán 10 Bài 1: Mệnh đề

b) Mệnh đề “Phương trình 3x + 7 = 0 có nghiệm” đúng vì Toán 10 Bài 1: Mệnh đề là nghiệm của phương trình.

c) Mệnh đề “Có ít nhất một số cộng với chính nó bằng 0” đúng vì 0 + 0 = 0

d) Mệnh đề “2022 là hợp số” đúng vì 2022 = 2.1011 = 3.673.

Bài 1.3

Cho hai câu sau:

P: “Tam giác ABC là tam giác vuông”;

Q: “Tam giác ABC có một góc bằng tổng hai góc còn lại”

Hãy phát biểu mệnh đề tương đương Toán 10 Bài 1: Mệnh đề và xét tính đúng sai của mệnh đề này.

Gợi ý đáp án

Phát biểu: “Tam giác ABC là tam giác vuông khi và chỉ khi tam giác ABC có một góc bằng tổng hai góc còn lại”.

Mệnh đề này đúng.

Thật vậy, giả sử ba góc của tam giác ABC lần lượt là x,y,z; (đơn vị Toán 10 Bài 1: Mệnh đề).

Ta có: tam giác ABC có một góc bằng tổng hai góc còn lại.

Không mất tính tổng quát, giả sử: x=y+z

Toán 10 Bài 1: Mệnh đề(vì x + y + x = Toán 10 Bài 1: Mệnh đề).

Toán 10 Bài 1: Mệnh đề

Vậy tam giác ABC vuông.

Bài 1.4

Phát biểu mệnh đề đảo của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề này.

P: “Nếu số tự nhiên n có chữ số tận cùng là 5 thì n chia hết cho 5”;

Q: “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”

Gợi ý đáp án

Mệnh đề đảo của mệnh đề P: “Nếu số tự nhiên n chia hết cho 5 thì n có chữ số tận cùng là 5”;

Mệnh đề này sai vì n còn có thể có chữ số tận cùng là 0. Chẳng hạn n = 10, chia hết cho 5 nhưng chữ số tận cùng bằng 0.

Mệnh đề đảo của mệnh đề Q: “Nếu tứ giác ABCD có hai đường chéo bằng nhau thì tứ giác ABCD là hình chữ nhật”

Mệnh đề này sai, chẳng hạn tứ giác ABCD (như hình dưới) – là hình thang cân – có hai đường chéo bằng nhau nhưng tứ giác ABCD không là hình chữ nhật

Bài 1.5

Với hai số thực a và b, xét mệnh đề P: Toán 10 Bài 1: Mệnh đề và Q: “0

a) Hãy phát biểu mệnh đề Toán 10 Bài 1: Mệnh đề

b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.

c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.

Gợi ý đáp án

a) Mệnh đề Toán 10 Bài 1: Mệnh đề là: “Nếu Toán 10 Bài 1: Mệnh đề thì 0

b) Mệnh đề Toán 10 Bài 1: Mệnh đề là: “Nếu 0

c) Mệnh đề Toán 10 Bài 1: Mệnh đề là: “Nếu Toán 10 Bài 1: Mệnh đề thì 0

Mệnh đề Toán 10 Bài 1: Mệnh đề là: “Nếu 0 ” đúng.

Bài 1.6

Xác định tính đúng sai của mệnh đề sau và tìm mệnh đề phủ định của nó.

Toán 10 Bài 1: Mệnh đề chia hết cho n + 1”

Gợi ý đáp án

Mệnh đề Toán 10 Bài 1: Mệnh đề chia hết cho n + 1” đúng. Vì Toán 10 Bài 1: Mệnh đề

Mệnh đề phủ định của mệnh đề Q, kí hiệu Toán 10 Bài 1: Mệnh đề là: Toán 10 Bài 1: Mệnh đề không chia hết cho n + 1”

Bài 1.7

Dùng kí hiệu Toán 10 Bài 1: Mệnh đề đề viết các mệnh đề sau:

P: “Mọi số tự nhiên đều có bình phương lớn hơn hoặc bằng chính nó”

Q: “Có một số thực cộng với chính nó bằng 0”

Gợi ý đáp án

Toán 10 Bài 1: Mệnh đề

Toán 10 Bài 1: Mệnh đề

III. Lý thuyết Toán 10 Bài 1: Mệnh đề

1. Mệnh đề

Mỗi mệnh đề phải hoặc đúng hoặc sai.

Một mệnh đề không thể vừa đúng, vừa sai.

Nói cách khác:

– Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

Ví dụ:

– “Mấy giờ bạn đi học về?” – không phải mệnh đề.

– ”4 là số chẵn” – là mệnh đề

2. Mệnh đề chứa biến

Ví dụ: “n là số tự nhiên không chia hết cho 2” không phải là một mệnh đề, vì không xác định được nó đúng hay sai.

+ Nếu ta gán cho n một giá trị Toán 10 Bài 1: Mệnh đề thì mệnh đề sai.

+ Nếu gán cho n một giá trị Toán 10 Bài 1: Mệnh đề thì mệnh đề đúng.

Ví dụ: Xét câu “x là ước của 3”. Tìm giá trị thực của x để từ câu đã cho, nhận được một mệnh đề đúng, một mệnh đề sai.

Hướng dẫn

– Với giá trị Toán 10 Bài 1: Mệnh đề thì mệnh đề là mệnh đề sai.

– Với giá trị Toán 10 Bài 1: Mệnh đề thì mệnh đề là mệnh đề đúng.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *