Công thức nghiệm của phương trình bậc hai

Công thức nghiệm của phương trình bậc hai

Công thức nghiệm của phương trình bậc hai là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến các bạn lớp 9 tham khảo.

Bạn đang đọc: Công thức nghiệm của phương trình bậc hai

Tài liệu bao gồm 28 trang tổng hợp toàn bộ kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề công thức nghiệm của phương trình bậc hai. Với tài liệu này giúp các bạn học sinh có nhiều tư liệu tham khảo, củng cố kiến thức Đại số lớp 9 chương. Bên cạnh đó các bạn tham khảo thêm Chuyên đề Giải phương trình bậc 2 chứa tham số.

Công thức nghiệm của phương trình bậc 2

    I. Tóm tắt lý thuyết

    1. Phương trình bậc hai một ân

    Phương trình bậc hai một ẩn (hay còn gọi là phương trình bậc hai) là phương trình có dạng:

    Công thức nghiệm của phương trình bậc hai

    trong đó a, b, c là các so thực cho trước, x là ẩn số.

    – Giải phương trình bậc hai một ẩn là đi tìm tập nghiệm của phương trình bậc hai một ẩn đó.

    2. Thức nghiệm của phương trình bậc hai

    Trường hợp 1. Nếu Công thức nghiệm của phương trình bậc hai thì phương trình vô nghiệm.

    Trường hợp 2. Nếu ∆ = 0 thì phương trình có nghiệm kép:

    Công thức nghiệm của phương trình bậc hai

    Trường hợp 3. Nếu A > 0 thì phương trình có hai nghiệm phân biệt:

    Công thức nghiệm của phương trình bậc hai

    3. Công thức nghiệm thu gọn của phương trình bậc hai

    Xét phương trình bậc 2  Công thức nghiệm của phương trình bậc hai với b = 2b’. Gọi biệt thức A’ = b’2 – ac.

    Trường hợp 1. Nếu A’

    Trường hợp 2. Nếu A’ = 0 thì phương trình có nghiệm kép:

    Công thức nghiệm của phương trình bậc hai

    Trưòmg hợp 3. Nếu ∆’ > 0 thì phương trình có hai nghiệm phân biệt:

    Công thức nghiệm của phương trình bậc hai

    Chú ý: Trong trường hợp hệ số b có dạng 2b’ ta nên sử dụng để giải phương trình sẽ cho lời giải ngắn gọn hơn.

    II. Bài tập và các dạng toán

    Dạng 1. Không dùng công thức nghiệm, giải phương tri bậc hai một ẩn cho trước

    Phương pháp giải: Ta có thế sử dụng một trong các cách sau:

    Cách 1. Đưa phương trình đã cho về dạng tích.

    Cách 2. Đưa phương trình đã cho về phương trình mà vế trái một bình phương còn vế phải là một hằng số.

    Bài 1.1 Giải các phương trình:

    a) 5x2 -7x = 0;

    b) -3 x2+ 9 = 0;

    c) x2 – 6 x + 5 = 0;

    d) 3x2 + 12x + 1 = 0.

    1.2 Giải các phương trình:

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    2.1.Với giá trị nào của tham số m thì phương trình 4x2+ m2x + 4m = 0 có nghiệm x = 1 ?

    2.2. Cho phương trình 4mx2 – x – 10m2 = 0. Tìm các giá trị cua tham số m để phương trình có nghiệm x =  2.

    Dạng 2. Giải phương trình bậc hai bằng cách sử dụng công thức nghiệm, công thức nghiệm thu gọn:

    Phương pháp giải: Sử dụng công thức nghiệm, công thức nghiệm thu gọn của phương trình bậc hai để giải.

    3.1. Xác định hệ số a,b,c; Tính biệt thức ∆ (hoặc ∆’ nếu b = 2b’) rồi tìm nghiệm của các phương trình:

    a) 2x2 – 3x – 5 = 0;

    b) x2 – 6x + 8 = 0;

    c) 9x2 – 12x + 4 = 0;

    d) -3x2 + 4x – 4 = 0.

    3.2. Xác định hệ số a,b,c; Tính biệt thức A ( hoặc A’nếu b = 2b’) rồi tìm nghiệm của các phương trình:

    a) x2 – x -11 = 0

    b) x2 – 4x + 4 = 0;

    c) -5x2 – 4x + 1 = 0;

    d) -2x2 + x – 3 = 0

    4.1. Giải các phương trình sau:

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    4.2. Giải các phương trình sau

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Công thức nghiệm của phương trình bậc hai

    Dạng 3. Sử dụng công thức nghiệm, xác định sô nghiệm của phương trình dạng bậc hai

    Phương pháp giải: Xét phương trình dạng bậc hai: ax2 + bx + c = 0.

    Phương trình có hai nghiệm kép Công thức nghiệm của phương trình bậc hai

    Phương trình có hai nghiệm phân biệt Công thức nghiệm của phương trình bậc hai0end{array}right.” width=”93″ height=”49″ data-latex=”Leftrightarrowleft{begin{array}{l}a neq 0 Delta>0end{array}right.” data-src=”https://tex.vdoc.vn?tex=%5CLeftrightarrow%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Da%20%5Cneq%200%20%5C%5C%20%5CDelta%3E0%5Cend%7Barray%7D%5Cright.”>

    Phương trình có đúng một nghiệm Công thức nghiệm của phương trình bậc hai

    Phương trình vô nghiệm Công thức nghiệm của phương trình bậc hai

    Chú ý: Nếu b = 2b’ ta có thể thay điều kiện của ∆ tương ứng bằng ∆’.

    5.1. Cho phương trình mx2 – 2 ( m- 1 ) x + m – 3 = 0 (m là tham số).

    Tìm các giá trị của m để phương trình:

    a) Có hai nghiệm phân biệt;

    c) Vô nghiệm;

    b) Có nghiệm kép;

    e) Có nghiệm.

    d) Có đúng một nghiệm;

    5.2. Cho phương trình (m – 2)x2 – 2(m + 1)x + m = 0 (m là tham số).

    Tìm các giá trị của ra để phương trình:

    a) Có hai nghiệm phân biệt;

    b) Có nghiệm kép;

    c) Vô nghiệm;

    d) Có đúng một nghiệm;

    e) Có nghiệm

    Dạng 4. Giải và biện luận phương trình dạng bậc hai

    Phương pháp giải:

    Giải và biện luận phương trình dạng bậc hai theo tham số m là tìm tập nghiệm của phương trình tùy theo sự thay đổi của m

    ,………………

    Nội dung vẫn còn, mời các bạn tải file về để xem chi tiết

    Để lại một bình luận

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *