Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ HỒ CHÍ MINH

(Đề thi chính thức)

Bạn đang đọc: Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI
LỚP 12 THPT NĂM HỌC 2012-2013
MÔN THI: TOÁN

Ngày thi: 18 tháng 10 năm 2012
(Thời gian làm bài 180 phút không kể thời gian giao đề)

Bài 1. (4 điểm)

Giải hệ phương trình:
Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

Bài 2. (4 điểm)

Cho dãy số (un) xác định bởi:
Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

Chứng minh dãy số (un) có giới hạn hữu hạn và tìm giới hạn đó

Bài 3. (4 điểm)

Cho x, y, z là các số dương thỏa mãn Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1). Chứng minh:
Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

Bài 4. (4 điểm)

Cho tam giác nhọn ABC với các đường cao AH, BK nội tiếp đường tròn (O). Gọi M là một điểm di động trên cung nhỏ BC của đường tròn (O) sao cho các đường thẳng AM và BK cắt nhau tại E; các đường thẳng BM và AH cắt nhau tại F. Chứng minh rằng khi M di động trên cung nhỏ BC của đường tròn (O) thì trung điểm của đoạn EF luôn nằm trên một đường thẳng cố định.

Bài 5. (4 điểm)

Tìm tất cả các đa thức P(x) hệ số thực thỏa mãn: Đề thi học sinh giỏi TP Hồ Chí Minh lớp 12 THPT năm 2012 – 2013 môn Toán (vòng 1)

Download tài liệu để xem thêm chi tiết

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *