Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2)

Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2)

SỞ GIÁO DỤC VÀ ĐÀO TẠO
LONG AN

(Đề thi chính thức)

Bạn đang đọc: Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2)

KỲ THI TUYỂN SINH VÀO LỚP 10 HỆ CHUYÊN
NĂM HỌC 2O12 – 2013
Môn thi: TOÁN (Hệ chuyên)

(Thời gian làm bài 150 phút không kể thời gian giao đề)
Ngày thi: 05/07/2012

Câu 1: (1,5 địểm)

Rút gọn biểu thức: Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2)

Câu 2: (2 điểm)

Cho phương trình: x2 – (2m + 3)x + m2 + m + 2 = 0 (m là tham số).

a) Định m để phương trình có nghiệm.

b) Định m để phương trình có hai nghiệm x1, x2, thỏa x1 = 2x2

Câu 3: (1 điểm)

Giải phương trình: (x + 3)(x – 2)(x + 1)(x + 6)= – 56.

Câu 4: (2,5 điểm)

Cho đường tròn (O) đường kính AB, trên cung AB lấy một điểm C (C không trùng với A, B và AC

a) Chứng minh tứ giác BCEM nội tiếp.

b) Chứng minh EH.MG = EA.HM.

c) Gọi K là giao điểm của AG và ED. Chứng minh AG.AK – AE.EB = AE2.

Câu 5: (1điểm).

Tìm các số nguyên x để Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2) là một số chính phương chẵn.

Câu 6: (1 điểm)

Cho a,b,c thuộc R; a,b,c > 0, a + b + c = 1.

Chứng minh rằng: Đề thi tuyển sinh lớp 10 tỉnh Long An năm học 2012 – 2013 môn Toán (Hệ chuyên – Đề 2)

Câu 7: (1 điểm)

Cho hai tia Ax và Ay vuông góc với nhau, trên tia Ax lấy điểm B cố định, điểm C di chuyển trên tia Ay. Đường tròn nội tiếp tam giác ABC lần lượt tiếp xúc với AC, BC tại M và N. Chứng minh MN đi qua một điểm cố định.

Download tài liệu để xem thêm chi tiết.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *