Giải Toán 11: Một vài áp dụng của toán học trong tài chính là tài liệu vô cùng hữu ích giúp các em học sinh lớp 11 có thêm nhiều gợi ý tham khảo để giải các bài tập trong SGK Toán 11 Kết nối tri thức với cuộc sống tập 1 trang 126.
Bạn đang đọc: Toán 11: Một vài áp dụng của toán học trong tài chính
Toán 11 Kết nối tri thức tập 1 trang 126 được biên soạn đầy đủ, chi tiết trả lời các câu hỏi từ bài nội dung bài học giúp các bạn có thêm nhiều nguồn ôn tập đối chiếu với kết quả mình đã làm. Vậy sau đây là nội dung chi tiết giải Toán 11 tập 1 Một vài áp dụng của toán học trong tài chính Kết nối tri thức, mời các bạn cùng theo dõi tại đây.
Giải Toán 11: Một vài áp dụng của toán học trong tài chính
Toán lớp 11 Kết nối tri thức tập 1 trang 126
1. Số tiền của một niên kim
Hoạt động 1 trang 126 : Số tiền của một niên kim
Bác Lan gửi đều đặn 10 triệu đồng vào ngày đầu mỗi tháng trong vòng 5 năm vào một tài khoản tích lũy hưởng lãi suất 6% mỗi năm, theo hình thức tính lãi kép hằng tháng
a) Tính số tiền có trong tài khoản vào cuối kì thứ nhất, cuối kì thứ hai
b) Tính số tiền có trong tài khoản vào cuối kì thứ n
c) Tính số tiền có trong tài khoản ngay sau lần thanh toán cuối cùng.
Gợi ý đáp án
a) Lãi suất hàng tháng là: 6% : 12 = 0.5%
Số tiền có trong tài khoản vào cuối kì thứ nhất: 10 (triệu đồng)
Số tiền có trong tài khoản vào cuối kì thứ hai: 10 x (1+0.005) = 10.05 (triệu đồng)
b) Số tiền có trong tài khoản vào cuối kì thứ n: 10 ×
c) Số tiền có trong tài khoản ngay sau lần thanh toán cuối cùng: 10 × = 697.7 (triệu đồng)
Vận dụng 1 trang 126
Anh Bình cần đầu tư bao nhiêu tiền hằng tháng với lãi suất 6% mỗi năm, theo hình thức lãi kép hằng tháng, để có 200 triệu đồng sau hai năm?
Gợi ý đáp án
Lãi suất mỗi tháng là: i = 6% : 12 = 0.5%
Ta có: (triệu đồng)
Vậy để có 200 triệu đồng sau hai năm, anh Bình cần đầu tư 7.864 triệu đồng mỗi tháng
2. Giá trị hiện tại của một niên kim
Hoạt động 2 trang 126
Nhận biết giá trị hiện tại của một số tiền
Giả sử một người gửi tiết kiệm với lãi suất không đổi 6% một năm, theo hình thức tính lãi kép hằng quý
a) Tính lãi suất i trong mỗi quý và số khoảng thời gian tính lãi trong vòng 5 năm
b) Giả sử sau 5 năm người đó nhận được số tiền 100 triệu đồng cả vốn lẫn lãi. Tính giá trị hiện tại của số tiền 100 triệu đồng đó.
Gợi ý đáp án
a) Lãi suất mỗi quý : i = 6% : 4 = 1.5%
Số khoảng thời gian tính lãi: 5 x 4 = 20
b) Giá trị hiện tại của số tiền 100 triệu đồng: Ap = Af(1 + i)−n = 100 × (1 + 0.015)−20 = 74.247 (triệu đồng)
Vận dụng 2 trang 127
Một người trúng xổ số giải đặc biệt với trị giá 5 tỉ đồng và số tiền trúng thưởng sẽ được trả dần vào hằng năm, mỗi năm 500 triệu đồng trong vòng 10 năm. Giá trị hiện tại của giải đặc biệt này là bao nhiêu? Giả sử rằng người đó có thể tìm được hình thức đầu tư với lãi suất 8% mỗi năm, tính lãi kép hằng năm.
Gợi ý đáp án
Đang cập nhật…