Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị

Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị

Phương pháp giải các dạng toán về hàm số và đồ thị là nguồn tư liệu vô cùng hay, hữu ích dành cho các bạn học sinh lớp 12 ôn tập chuẩn bị thi THPT Quốc gia 2023.

Bạn đang đọc: Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị

Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị gồm 10 trang hướng dẫn chi tiết đầy đủ cách giải các dạng toán về hàm số và đồ thị, rất thuận tiện cho việc tra cứu kèm theo ví dụ minh họa và bài tập. Qua tài liệu này giúp học sinh có thể hiểu sâu được hướng suy luận, đồng thời có thể giải quyết được các bài toán tương tự. Ngoài ra các bạn xem thêm bộ công thức giải nhanh Toán 12, Công thức tính thể tích khối tròn xoay.

Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị

A. Tính đơn điệu của hàm số

1. Tìm điều kiện để hàm số y = f(x) đơn điệu trên tập xác định (hoặc trên từng khoảng xác định)

2. Tìm điều kiện để hàm số bậc 3: Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị (a ≠ 0) đơn điệu trên khoảng (a; b)

3. Tìm điều kiện để hàm số bậc 3: Tóm tắt phương pháp giải các dạng toán về hàm số và đồ thị (a ≠ 0) đơn điệu trên khoảng có độ dài bằng k cho trước

B. Cực trị của hàm số

1. Tìm điều kiện để đường thẳng đi qua các điểm cực đại, cực tiểu song song (vuông góc) với đường thẳng d: y = px + q

2. Tìm điều kiện để đường thẳng đi qua các điểm cực đại, cực tiểu tạo với đường thẳng d: y = px + q một góc a

3. Tìm điều kiện để đường thẳng đi qua các điểm cực đại, cực tiểu cắt hai trục Ox, Oy tại hai điểm A, B sao cho ΔIAB có diện tích S cho trước (với I là điểm cho trước)

4. Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B sao cho ΔIAB có diện tích S cho trước (với I là điểm cho trước)

5. Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B đối xứng qua đường thẳng d cho trước

6. Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B cách đều đường thẳng d cho trước

7. Tìm điều kiện để đồ thị hàm số có hai điểm cực trị A, B và khoảng cách giữa hai điểm A, B là lớn nhất (nhỏ nhất)

8. Tìm điều kiện để hàm số có cực đại, cực tiểu và hoành độ các điểm cực trị thoả hệ thức cho trước

9. Tìm điều kiện để hàm số có cực trị trên khoảng K1 = (-∞; a) hoặc K2 = (a; +∞)

10. Tìm điều kiện để hàm số có hai cực trị x1; x2 thoả: x1 2 hoặc x12 1 2

C. Sự tương giao của 2 đồ thị hàm số

1. Tìm điều kiện để đồ thị (C) và trục hoành có 1 điểm chung duy nhất

2. Tìm điều kiện để đồ thị (C) và trục hoành có 2 điểm chung phân biệt

3. Tìm điều kiện để đồ thị (C) và trục hoành có 3 điểm chung phân biệt

4. Tìm điều kiện để đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ dương

5. Tìm điều kiện để đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ âm

6. Tìm điều kiện để đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ tạo thành một cấp số cộng

7. Tìm điều kiện để đồ thị (C) cắt trục hoành tại 3 điểm phân biệt có hoành độ tạo thành một cấp số nhân

D. Tiếp tuyến của đồ thị hàm số

1. Viết phương trình tiếp tuyến Δ của (C): y = f(x) tại điểm M(x0; y0) ∈ (C)

2. Viết phương trình tiếp tuyến Δ của (C): y = f(x) biết Δ có hệ số góc k cho trước

3. Viết phương trình tiếp tuyến Δ của (C): y = f(x) biết Δ đi qua điểm A(xA; yA)

4. Viết phương trình tiếp tuyến Δ của (C): y = f(x) biết Δ tạo với trục Ox một góc α

5. Viết phương trình tiếp tuyến Δ của (C): y = f(x) biết Δ tạo với đường thẳng d: y = ax + b một góc α

6. Viết phương trình tiếp tuyến Δ của (C): y = f(x) biết Δ cắt hai trục toạ độ tại A và B sao cho tam giác OAB vuông cân hoặc có diện tích S cho trước

7. Lập phương trình tiếp tuyến chung của hai đồ thị (C1): y = f(x), (C2): y = g(x)

8. Tìm những điểm trên đồ thị (C): y = f(x) sao cho tại đó tiếp tuyến của (C) song song hoặc vuông góc với một đường thẳng d cho trước

9. Tìm những điểm trên đường thẳng d mà từ đó có thể vẽ được 1, 2, 3, … tiếp tuyến với đồ thị (C): y = f(x)

10. Tìm những điểm mà từ đó có thể vẽ được 2 tiếp tuyến với đồ thị (C): y = f(x) và 2 tiếp tuyến đó vuông góc với nhau

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *